Uniform Estimates of the Resolvent of the Laplace–Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II

نویسندگان

  • Fernando Cardoso
  • Georgi Vodev
چکیده

We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under some natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON Lp RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS

In this article we prove L estimates for resolvents of Laplace-Beltrami operators on compact Riemannian manifolds, generalizing results of [12] in the Euclidean case and [17] for the torus. We follow [18] and construct Hadamard’s parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation ...

متن کامل

The Laplace-Beltrami-Operator on Riemannian Manifolds

This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...

متن کامل

Geometric Scattering Theory and Applications

Classical scattering theory, by which we mean the scattering of acoustic and electromagnetic waves and quantum particles, is a very old discipline with roots in mathematical physics. It has also become an important part of the modern theory of linear partial differential equations. Spectral geometry is a slightly more recent subject, the goal of which is to understand the connections between th...

متن کامل

Eigenvalues Estimates for the p-Laplace Operator on Manifolds

The Laplace-Beltrami operator on a Riemannian manifold, its spectral theory and the relations between its first eigenvalue and the geometrical data of the manifold, such as curvatures, diameter, injectivity radius, volume, has been extensively studied in the recent mathematical literature. In the last few years, another operator, called p-Laplacian, arising from problems on Non-Newtonian Fluids...

متن کامل

On L-resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds

We address an interesting question raised by Dos Santos Ferreira, Kenig and Salo [11] about regions Rg ⊂ C for which there can be uniform L 2n n+2 → L 2n n−2 resolvent estimates for ∆g + ζ, ζ ∈ Rg , where ∆g is the Laplace-Beltrami operator with metric g on a given compact boundaryless Riemannian manifold of dimension n ≥ 3. This is related to earlier work of Kenig, Ruiz and the third author [1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001